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Summary 

The spread of cloud computing and the Internet of Things (IoT), as well as the increase in computer resources 

such as GPUs, are expanding the possibilities for the application of Artificial Intelligence (AI). In this paper, we 

outline our AI-based human factor extraction, remote control of building equipment systems, and the data 

platform that enables them. As human factors, the authors used cameras to detect people and acquire the clothing 

insulation value. In addition, a reinforcement learning engine, which learns based on the building equipment and 

IoT data collected in the cloud, was applied to control lighting and air conditioning systems. Comparison of the 

system's actual data with simulations confirmed energy savings of more than 15% for lighting and 10% for air 

conditioning. 
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1 Introduction 

 

The widespread adoption of cloud technologies, the Internet of Things (IoT) - which connects various devices to networks - and 

big data technologies that use statistical and machine learning techniques to extract insights from large amounts of data, have 

facilitated the establishment of an environment in which services related to advanced control and analysis can be offered at a low 

cost in a cloud environment. In building facilities, there is a growing demand for further advancements in energy-conservation 

technologies to achieve carbon neutrality. Furthermore, there is a need to enhance occupant comfort by capturing detailed 

environmental movements and reducing the workload through remote control and automation, given to the shortage of human 

resources for building management. To meet these needs, we propose a next-generation building equipment system that uses human 

factors and artificial intelligence to meet these needs. This study presents an overview of this system and the results of 

demonstration tests conducted at the Takenaka Research and Development Institute. 

 

2 System overview 

 

Fig. 1 depicts the developed system configuration, which consists of five components: (1) a group of building equipment systems; 

(2) a group of IoT sensors and systems that extract human factors; (3) a gateway; (4) a data platform (Takenaka Building 

Communication System); and (5) an AI learning engine for building control (reinforcement learning engine). The measured values 

and setting values from the first two components (component 1 and 2) are acquired at the granularity of approximately 1 min. These 

data are then sent to the data platform (component 4), which is built into the cloud via the gateway (component 3). 

These data are referenced in real-time in the reinforcement learning engine (component 5), stored in the internal big data 

processing infrastructure, and provided for learning to the same component. The reinforcement learning conducted by component 

5 performs learning based on stored data while attempting various controls based on real-time measured values and setting values. 

The control command from component 5 is transmitted to component 3 via the application programming interface (API) possessed 

by component 4, converted to the communication specifications of the on-site equipment, and transmitted to component 1 in real-

time. For further details, please refer to Reference1). 

This system is operated at the Takenaka Research and Development Institute (Inzai City, Chiba Prefecture)2). The institute 

includes research, management, and experiment buildings with a total floor area of 39,150 m2 and approximately 200 researchers 

work there. In 2019, the building and facilities underwent renovation to create a space that enhances the creative ability of each 
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individual, with the goal of improving their ability to create new value. In introducing the developed system, remote control points 

for heat source control were added, which were not included in the above-mentioned modifications. Additionally, cameras and 

gateways were installed to extract human factors. The following sections describe technologies that were used in the developed 

system to extract human factors, such as human position, pose, and insulation values, and demonstrate the system’s AI-based 

control of building equipment through the results obtained. 

 

3 Extraction of human factors 

 

3.1 System overview 

We developed a system that utilizes deep learning to detect people, estimate their positions, and estimate their insulation values 

based on images captured by multiple network cameras. Fig. 2 shows that the cameras were compact, ceiling-mounted models 

capable of capturing 360-degree images, which allowed for a wide range of coverage with minimal camera pressure. Existing 

trained models were utilized to efficiently develop the system. However, these models were trained using images captured with a 

perspective projection lens (so-called “ordinary” camera lens), resulting in significantly reduced inference accuracy when analyzing 

distorted fish-eye lens images. To address this issue we added a processing step in which the captured fish-eye image was expanded 

into multiple perspective projection images, inferences were made, and the results were integrated (Fig. 3). The system captured 

images at a frequency was every minute. 

 

3.2 Human detection, location, and insulation value estimation 

A publicly available trained model (ssd_inception_v2_coco3)) was used as the base model for 

human detection. To prepare a model for this study, a trained dataset was used for fine-tuning. An 

example of the training data is shown in Fig. 4, which consists of images of men and women in their 

20s to 60s in postures and clothing commonly found in office environments. Each human region 

(whole body, upper body, lower body) and clothes were labeled with rectangles. 

In addition, we introduced a pose estimation method that estimates the positions of various body 

parts, such as the head, shoulders, elbows, wrists, waist, 

knees, and ankles, for the rectangle obtained by the human 

detection. This allows for more accurate determination of 

the position of a person’s feet more accurately and improves 

the accuracy of estimating a person’s position in the original 

space. To achieve this, we utilized a pre-trained model 

(human-pose-estimation-00014)) for which the pose 

estimation had also published. Fig. 5 displays an example of 
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Fig. 3 Expansion of fish-eye image and example of AI inference 
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the pose estimation results. By estimating states such as standing and sitting, more detailed information about building users can 

be obtained. 

 Fig. 6 depicts the time-series changes in the number of occupants during the evaluation period was from December 1, 2020 

to October 31, 2021. It can be observed from the figure that the number of people counted were small from January to March. This 

coincides with the period (January 8 to March 21, 2021) during which Chiba Prefecture, where the Takenaka Research and 

Development Institute is located, declared a state of emergency owing to the spread of COVID-19 and implemented measures such 

as working from home instead of commuting to the office. Additionally, a drop in the number of people counted at around 12:00 

in each month was observed, which was attributed to building users leaving their desks for a lunch break. However, multiple people 

were detected at night, which did not match the actual usage of the building. After checking the camera images, it was found that 

the accuracy of the image analysis decreased because the building lights were turned off after 19:00, resulting in an increased 

number of false positives. Fig. 7 illustrates the results of a heat map display of the estimated locations of building users in October, 

when the number of people counted was particularly high. It can be observed that the position estimation results were concentrated 

around seats. Additionally, as a countermeasure against the spread of COVID-19, the seating positions in the building were set up 

diagonally. It was confirmed that the building users were seated diagonally and that the position estimation results were accurate. 

A dataset similar to the one described above was created to estimate the insulation value. A fine-tuned model was used with 

DenseNet2015) as the base model, and it was trained to estimate 19 clothing patterns (insulation values) typically found in office 

environments. Fig. 8 shows the correct response rate for the test data (573 types). The average correct response rate was 77%, 

although the rate tended to decrease when 

the number of training images was small. In 

this study, only the upper body was subject 

to estimation, and the whole body insulation 

value (clo value) was obtained by adding the 

lower body as a fixed value. This is because 

it is difficult to separate the upper and lower 

bodies with the current algorithm. However, 

because the clo value for the lower body is 

almost constant in office environments, it is 

considered valid. 

 
Fig. 7 Heat map of occupants 

14:00

 

Fig. 6 Time-series changes in the number of occupants for each month 

 

Fig. 4 Example of training data 

 

Fig. 5 Results of pose estimation 
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Fig. 8 Accuracy of the clothing insulation value estimation model 
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4 Development of equipment control method using deep learning 

 

4.1 Application to optical environment 

control and verification of effect 

In the target building2), a luminance control system was 

used to control lighting, blinds, and louvers to reduce 

lighting power consumption during daylight. As shown in 

Fig. 9, luminance cameras are installed in various places in 

the room. The average luminance of a predetermined area 

(window surface, wall surface, floor surface, etc.) is 

calculated from the captured image, and each device is 

controlled so that the average luminance falls within the 

target luminance range determined for each area. This 

control is referred to as “local control” for convenience. 

Local control systems establish rules for controlling the 

order of operation for devices in each area when the target 

luminance range is exceeded. If the luminance remains 

outside the target range after operating the blinds or 

louvers, the lighting dimming rate is adjusted. However, in 

this research and development, reinforcement learning 

methods are utilized to create a model that learns from past 

data, determines the behavior that maintains indoor 

luminance within the target range while minimizing power 

consumption, and controls each device. This approach is 

referred to as AI control. Table 1 provides a summary of the 

input/output data that are utilized for AI control model 

learning. 

Fig. 10 shows an overview of the AI control model. This 

model is constructed by combining two models. The first is 

a predictive AI model that predicts indoor luminance based 

on accumulated past operational data, allowing for the 

simulation of luminance by various devices under certain 

conditions. The predictive AI model used LightGBM6), 

which is a decision tree-based algorithm. Additionally, past 

data was utilized to learn the relationship between device 

operation status (state/behavior), power consumption, and 

rewards determined from luminance, as shown in Table 1. 

The second model is a reinforcement learning AI model 

that selects the optimal method of operating equipment. 

The reinforcement learning AI model used DDPG7), which 

is a reinforcement learning method that is positioned 

between the actor-critic policy gradient method and Q-

learning. These models were built during the learning 

period of June to November 2020, and put into operation in 

the real environment from January 2021. However, a gap 

in the data existed because most of the operating data used 

in the initial model were for local control, which controls 

 

Fig. 9 Light environment control based on brightness 
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Table 1 Input / output and reward of AI model for light environment control 

 

Objective

(1) Average luminance of each area must be within the target

luminance range

(2) Minimize lighting power consumption

Input data
Sun altitude/azimuth angle, solar radiation, atmospheric pressure

dimming rate, louver angle, blind angle/height

Action

(Operation target)

(1) Light dimming rate

(2) Louver angle

(3) Blind angle

(4) Blind height

Reward function

rewards

 = - Σ (Lighting power consumption*1＋weightα×penalties*2)

*1…Rated power×number of lights×dimming ratio×coefficient

*2…Rated power×number of lights(Luminaires operating in an area when

luminance is out of the target luminance range)

Training data period

Jun., 2020 ~ May, 2021

(The first model was built by training using data obtained between Jun.,

2020 and Nov., 2020, and the model was updated by re-training in May

2021.)

136 point

 

 

Fig. 10 Overview of AI model for light environment control 

Fig. 11 Comparison of BAS and AI system with respect to brightness control 
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equipment based on rules. Therefore, in May 2021, the 

training data were expanded to one year (June 2020 to May 

2021), and re-learning was conducted to update the AI model. 

We assessed the effectiveness of the control system by 

examining the indoor luminance control performance. Fig. 11 

illustrates the percentage of time the luminance was outside 

the target range under both the local and AI control methods. 

While the effectiveness of both methods varied based on the 

control area, areas that exhibited poor controllability with 

local control tended to perform worse with AI control as well. 

In certain areas, AI control deviated from the target 

luminance range for a longer time than local control. 

Specifically, areas exposed to solar radiation, such as those 

located under skylights and near windows, were more susceptible to deviations from the target luminance range. In this study, the 

penalty weighting factor in the reward calculation was the same for all areas. However, we believe that adjusting the weighting 

factor for each area may improve the system's performance. 

Fig. 12 displays the comparison between the lighting power consumption under AI control and local control for the period of 

January to December 2021. The AI control lighting power consumption is based on actual measured values, while the local control 

result is the sum of selected days when the amount of solar radiation was almost identical. Despite potential weather-related 

variations, a reduction in power consumption of 15-40% was observed for each month. Furthermore, the annual lighting power 

consumption was found to be reduced by approximately 29%. 

 

4.2 Application to air conditioning control and effect verification 

For air conditioning control, in this development, we constructed an AI-based control system for (1) improving the air 

conditioning start time and (2) optimizing the heat source water supply temperature. 

(1)  Improvement of air conditioning start time and effect verification 

The time required for the room temperature to rise to the 

optimum temperature (set temperature or control 

temperature) from the air conditioning start time varies 

depending on factors, such as weather conditions, indoor 

load conditions, and hot/cold water temperatures; thus, it is 

possible to conserve energy by adjusting the air 

conditioning start time according to the cooling/heating 

load (see Fig. 13). Many buildings often have fixed start 

times to accommodate scheduled operations, but this can 

result in wasted air conditioning time if the temperature 

reaches the desired level earlier than the work start time. 

However, the air conditioning energy consumption can be reduced by appropriately adjusting the air conditioning start time based 

on the outside air temperature, room temperature, and operating conditions of the heat source and air conditioner. In this study, we 

developed an AI model that predicts the optimum air conditioning start time that can achieve the appropriate temperature by the 

work start time and also conserve energy based on various data collected in the data platform. We then verified the effectiveness 

of the model. 

Table 2 presents the input and output data used for the AI model. In the target building, the air conditioning was scheduled to 

start at 6:00 every day, and the room temperature was adjusted to the appropriate temperature by 8:30 during working hours. The 

objective of the developed system was to automatically adjust the air conditioning start time so that the room temperature reaches 

the appropriate temperature at 8:00, which is 30 minutes before the end of working hours. The constructed AI model predicts the 

average temperature of each floor at 8:00 using features such as outside air temperature, indoor temperature and humidity, heat 

supply amount, and air conditioning operation status. The room temperature was predicted every 10 minutes from 6:00 to 8:00, 

 

Fig. 12 Energy saving effect by AI control system 
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Fig. 13 Improvement of air conditioning start time 
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and if the temperature exceeded the optimal temperature 

during cooling, a command was sent to the automatic 

control via the data platform to start the air conditioning 

operation. Separate models need to be created for cooling 

and heating because the prediction model exhibits varying 

room temperature behavior for each. However, in the 

demonstration building, the rooms were open from the first 

to the third floors, and it takes time for the room 

temperature to rise to the appropriate level during heating. 

Thus, delaying the air conditioning start time has no effect 

on the heating results. The cooling results are described 

below. 

Fig. 14 shows the results of comparing the predicted values of the AI model and the measured values. The legend in the figure 

indicates the predicted time, and it can be observed that the room temperature at 8:00 could be predicted with good accuracy within 

±0.5 °C, regardless of the predicted time. 

Fig. 15 shows an example of the time-series changes in air conditioning start time delayed by AI control and normal control, 

which starts the air conditioning at 6:00. In both types of control, power consumption fluctuates significantly when air condition is 

started because of the large load caused by the water temperature in the pipes and indoor conditions. However, it can be observed 

that the fluctuation gradually changed after approximately 1 h from the start. Therefore, to calculate the energy-conserving effect 

achieved by delaying the air conditioning start time, we used the following formula: 

Air conditioning power reduction due to air conditioning start delay (kWh) 

= Power consumption 1–2 h after starting air conditioning (kWh/h) × delay time (h) 

Fig. 16 shows the results of a trial calculation of the annual energy conservation effect achieved by optimizing the air conditioning 

start time. The power consumption during AI control is the 

actual value, and the power consumption of the normal 

control is the value obtained by adding the amount of air 

conditioning power reduction during AI control to the actual 

value calculated using the formula described above. It can be 

observed that the reduction rate in the intermediate period is 

significant, and there was a reduction effect of approximately 

20–30% for the air conditioning power consumption from 

6:00 to 9:00. Additionally, there was a reduction effect of 

approximately 2–5% even in the summer. This reduction was 

approximately 1.8% of the air conditioning power 

consumption during the entire cooling period. 

Table 2 Input / output of AI model for air conditioning start time 

 

Objective Reduction of wasted operating time

Input data

Outdoor temperature/humidity, solar radiation, rain, sunset,

Chilled/hot water load/on/off for each HVAC device,

supply water temperature, average temperature/huidity of each

floor, time, holiday

Model LightGBM

Prediction target

Indoor temperature at 8:00 a.m. when air conditioning is not in

operation

*Judges whether the set point (cooling: 26℃, heating: 22℃) is

reached or not.

Operation target On/Off of each HVAC device

Training data period Jun., 2020 ~ Oct., 2020

 

Fig. 14 Comparison of room temperature predicted value  

and actual value 

 

Fig. 15 Changes in air conditioning power consumption 

when the air conditioning start time is adjusted 

 

Fig. 16 Energy saving effect by optimizing the air conditioning start timez 
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(2)  Optimization of heat source water supply temperature 

Fig. 17 shows the relationship between the heat source 

system COP and water supply temperature. COP is 

defined as the amount of cold/hot water heat generated 

by the heat source/power consumption of the heat source 

system (including pump power) and is an indicator of 

heat source efficiency. Taking cooling as an example, the 

COP of the heat source system increases as the water 

supply temperature increases, indicating that the system 

operates with high efficiency (i.e., energy is being 

conserved). However, if the water supply temperature is 

raised too high, the room cannot be cooled or 

dehumidified, and the indoor environment deteriorates. 

Therefore, in the AI model design, rewards and constraints were set to maintain the room temperature and humidity of each room 

in the target area while minimizing the power consumption of the heat source system. 

 Table 3 shows the organized input and output data of 

the AI model. In this model, the difference between the set 

temperature and the actual room temperature of multiple 

rooms is set as a penalty, and the reward is the sum of the 

penalty multiplied by a weight and the power consumption 

of the heat source system multiplied by -1. As with the light 

environment control, LightGBM was used to perform 

supervised learning and build a model to predict this reward. 

Additionally, the method of determining the water supply 

temperature entailed using this prediction model to predict 

the rewards when multiple water supply temperatures were 

selected. We selected the water supply temperature that 

maximized the reward. In cases where the predicted rewards 

were the same, the median value of those water supply 

temperatures was selected. When implementing the control in this model, the control interval was set to 30 min, and the effect was 

verified for the air conditioning operating hours from 6:00 to 18:00. Although predictions were made to maximize the reward, in 

cases where the indoor environment deteriorated (e.g., room temperature deviating from set temperature, ineffective 

dehumidification), then the rule of forcibly returning the water supply temperature was applied to maintain the comfort of the 

indoor environment. 

This was operated in the demonstration building for one year to understand the annual energy-conserving effect of AI control. 

Fig. 18 shows the results of a comparison of the power consumption of the heat source system under AI control and normal control. 

Here, the power consumption of AI control is an actual 

value, but the power consumption of normal control is a 

calculated value. Specifically, the calculations were made 

on the assumption that cold water was kept at 7 °C during 

cooling and hot water at 45 °C during heating when 

processing the same heat load as under AI control, based on 

the relationship between the water supply temperature and 

the heat source system COP obtained from past operation 

data and pump efficiency. 

The figure shows that AI control achieved energy-

conserving operations, with reduction rates of 14.4% during 

the cooling period and 8.1% during the heating period, 

 
Fig. 17 Relationship between COP of HVAC system and water supply temperature 

(left : during cooling, right : during heating) 

Table 3 Input / output and reward of AI model for water supply temperature 

 

Objective

(1) Indoor temperature must be within ±2℃ of the set

temperature.

(2) Minimize heat source power consumption

Input data

Outdoor temperature/humidity, solar radiation, rain, sunset,

Chilled/hot water load, indoor temperature/humidity, setpoint for

each HVAC device

Action

(Operation target)
Chilled and hot water supply temperature

Reward function

Rewards

 = - Σ(Power consumption (of heatsource equipment) *1

                  ＋weightα×penalties*2)

*1…Since the target area is part of the entire building, the load of

each HVAC device was summed and the power consumption was

calculated using the power consumption characteristic equation

created from the measured data.

*2…Difference between setpoint and actual indoor temperature

Training data period
Cooling…Jun., 2020 ~ Sep., 2020

Heating…Nov., 2020 ~ Dec., 2020

 

Fig. 18 Energy saving effect by AI control system 
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resulting in a reduction of 10.6% of the annual heat source power consumption. The energy-conserving effect during the cooling 

period includes the improvement in the air conditioning start time, as described in the previous section. The reduction rate during 

heating is smaller than that during cooling, which is attributed to the characteristics of the target heat source equipment. This is 

because, as can be observed from the relationship between the heat source system COP characteristic and the water supply 

temperature, the COP improvement effect due to changes in the water supply temperature was smaller during heating than during 

cooling. 

 

5 Summary 

 

To realize smart buildings, we developed a data linkage platform that centralizes information. Furthermore, we utilized 

technologies to obtain user information and implement equipment control technologies that minimize energy consumption while 

maintaining comfort in offices that are actually in operation. The data collected over a period of more than a year was then analyzed 

and verified. 

To extract human factors, we created a dataset of insulation value that are typically found in office settings, which was previously 

unavailable. We then built a system that can estimate a person’s position, pose, and insulation value while keeping development 

costs low by fine-tuning a pre-trained  model. In the future, this user information can be used to develop applications for equipment 

interlocking control and space usage analysis. Furthermore, for building facility control using AI, we developed a facility control 

system that uses machine learning based on operational data obtained from a data platform. After operating the system for one year, 

we confirmed that we were able to establish control that achieved both energy conservation and an indoor environment. 
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